Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Neuroimage ; 289: 120547, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38373677

RESUMO

Parkinson's disease (PD) is a common neurodegenerative disease, and apart from a few rare genetic causes, its pathogenesis remains largely unclear. Recent scientific interest has been captured by the involvement of iron biochemistry and the disruption of iron homeostasis, particularly within the brain regions specifically affected in PD. The advent of Quantitative Susceptibility Mapping (QSM) has enabled non-invasive quantification of brain iron in vivo by MRI, which has contributed to the understanding of iron-associated pathogenesis and has the potential for the development of iron-based biomarkers in PD. This review elucidates the biochemical underpinnings of brain iron accumulation, details advancements in iron-sensitive MRI technologies, and discusses the role of QSM as a biomarker of iron deposition in PD. Despite considerable progress, several challenges impede its clinical application after a decade of QSM studies. The initiation of multi-site research is warranted for developing robust, interpretable, and disease-specific biomarkers for monitoring PD disease progression.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/patologia , Neuroimagem , Imageamento por Ressonância Magnética/métodos , Biomarcadores , Ferro , Progressão da Doença , Mapeamento Encefálico/métodos
2.
Magn Reson Med ; 91(5): 1834-1862, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38247051

RESUMO

This article provides recommendations for implementing QSM for clinical brain research. It is a consensus of the International Society of Magnetic Resonance in Medicine, Electro-Magnetic Tissue Properties Study Group. While QSM technical development continues to advance rapidly, the current QSM methods have been demonstrated to be repeatable and reproducible for generating quantitative tissue magnetic susceptibility maps in the brain. However, the many QSM approaches available have generated a need in the neuroimaging community for guidelines on implementation. This article outlines considerations and implementation recommendations for QSM data acquisition, processing, analysis, and publication. We recommend that data be acquired using a monopolar 3D multi-echo gradient echo (GRE) sequence and that phase images be saved and exported in Digital Imaging and Communications in Medicine (DICOM) format and unwrapped using an exact unwrapping approach. Multi-echo images should be combined before background field removal, and a brain mask created using a brain extraction tool with the incorporation of phase-quality-based masking. Background fields within the brain mask should be removed using a technique based on SHARP or PDF, and the optimization approach to dipole inversion should be employed with a sparsity-based regularization. Susceptibility values should be measured relative to a specified reference, including the common reference region of the whole brain as a region of interest in the analysis. The minimum acquisition and processing details required when reporting QSM results are also provided. These recommendations should facilitate clinical QSM research and promote harmonized data acquisition, analysis, and reporting.


Assuntos
Encéfalo , Processamento de Imagem Assistida por Computador , Consenso , Processamento de Imagem Assistida por Computador/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Cabeça , Imageamento por Ressonância Magnética/métodos , Algoritmos , Mapeamento Encefálico/métodos
3.
Talanta ; 270: 125518, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38128277

RESUMO

Multiple sclerosis (MS) is a prevalent immune-mediated inflammatory disease of the central nervous system inducing a widespread degradation of myelin and resulting in neurological deficits. Recent advances in molecular and atomic imaging provide the means to probe the microenvironment in affected brain tissues at an unprecedented level of detail and may provide new insights. This study showcases state-of-the-art spectroscopic and mass spectrometric techniques to compare distributions of molecular and atomic entities in MS lesions and surrounding brain tissues. MS brains underwent post-mortem magnetic resonance imaging (MRI) to locate and subsequently dissect MS lesions and surrounding white matter. Digests of lesions and unaffected white matter were analysed via ICP-MS/MS revealing significant differences in concentrations of Li, Mg, P, K, Mn, V, Rb, Ag, Gd and Bi. Micro x-ray fluorescence spectroscopy (µXRF) and laser ablation - inductively coupled plasma - time of flight - mass spectrometry (LA-ICP-ToF-MS) were used as micro-analytical imaging techniques to study distributions of both endogenous and xenobiotic elements. The essential trace elements Fe, Cu and Zn were subsequently calibrated using in-house manufactured gelatine standards. Lipid distributions were studied using IR-micro spectroscopy and matrix assisted laser desorption/ionisation mass spectrometry imaging (MALDI-MSI). MALDI-MSI was complemented with high-resolution tandem mass spectrometry and trapped ion mobility spectroscopy for the annotation of specified phospho- and sphingolipids, revealing specific lipid species decreased in MS lesions compared to surrounding white matter. This explorative study demonstrated that modern molecular and atomic mapping techniques provide high-resolution imaging for relevant bio-indicative entities which may complement our current understanding of the underlying pathophysiological processes.


Assuntos
Esclerose Múltipla , Humanos , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Espectrometria de Massas em Tandem , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Encéfalo/diagnóstico por imagem , Lipídeos
4.
ArXiv ; 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37461418

RESUMO

This article provides recommendations for implementing quantitative susceptibility mapping (QSM) for clinical brain research. It is a consensus of the ISMRM Electro-Magnetic Tissue Properties Study Group. While QSM technical development continues to advance rapidly, the current QSM methods have been demonstrated to be repeatable and reproducible for generating quantitative tissue magnetic susceptibility maps in the brain. However, the many QSM approaches available give rise to the need in the neuroimaging community for guidelines on implementation. This article describes relevant considerations and provides specific implementation recommendations for all steps in QSM data acquisition, processing, analysis, and presentation in scientific publications. We recommend that data be acquired using a monopolar 3D multi-echo GRE sequence, that phase images be saved and exported in DICOM format and unwrapped using an exact unwrapping approach. Multi-echo images should be combined before background removal, and a brain mask created using a brain extraction tool with the incorporation of phase-quality-based masking. Background fields should be removed within the brain mask using a technique based on SHARP or PDF, and the optimization approach to dipole inversion should be employed with a sparsity-based regularization. Susceptibility values should be measured relative to a specified reference, including the common reference region of whole brain as a region of interest in the analysis, and QSM results should be reported with - as a minimum - the acquisition and processing specifications listed in the last section of the article. These recommendations should facilitate clinical QSM research and lead to increased harmonization in data acquisition, analysis, and reporting.

5.
Sci Rep ; 12(1): 20254, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36424437

RESUMO

Deep neural networks are increasingly used for neurological disease classification by MRI, but the networks' decisions are not easily interpretable by humans. Heat mapping by deep Taylor decomposition revealed that (potentially misleading) image features even outside of the brain tissue are crucial for the classifier's decision. We propose a regularization technique to train convolutional neural network (CNN) classifiers utilizing relevance-guided heat maps calculated online during training. The method was applied using T1-weighted MR images from 128 subjects with Alzheimer's disease (mean age = 71.9 ± 8.5 years) and 290 control subjects (mean age = 71.3 ± 6.4 years). The developed relevance-guided framework achieves higher classification accuracies than conventional CNNs but more importantly, it relies on less but more relevant and physiological plausible voxels within brain tissue. Additionally, preprocessing effects from skull stripping and registration are mitigated. With the interpretability of the decision mechanisms underlying CNNs, these results challenge the notion that unprocessed T1-weighted brain MR images in standard CNNs yield higher classification accuracy in Alzheimer's disease than solely atrophy.


Assuntos
Doença de Alzheimer , Aprendizado Profundo , Humanos , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico por imagem , Cabeça , Encéfalo/diagnóstico por imagem , Atrofia
6.
Aging (Albany NY) ; 14(16): 6415-6426, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35951362

RESUMO

BACKGROUND: While iron is essential for normal brain functioning, elevated concentrations are commonly found in neurodegenerative diseases and are associated with impaired cognition and neurological deficits. Currently, only little is known about genetic and environmental factors that influence brain iron concentrations. METHODS: Heritability and bivariate heritability of regional brain iron concentrations, assessed by R2* relaxometry at 3 Tesla MRI, were estimated with variance components models in 130 middle-aged to elderly participants of the Austrian Stroke Prevention Family Study. RESULTS: Heritability of R2* iron ranged from 0.46 to 0.82 in basal ganglia and from 0.65 to 0.76 in cortical lobes. Age and BMI explained up to 12% and 9% of the variance of R2* iron, while APOE ε4 carrier status, hypertension, diabetes, hypercholesterolemia, sex and smoking explained 5% or less. The genetic correlation of R2* iron among basal ganglionic nuclei and among cortical lobes ranged from 0.78 to 0.87 and from 0.65 to 0.97, respectively. R2* rates in basal ganglia and cortex were not genetically correlated. CONCLUSIONS: Regional brain iron concentrations are mainly driven by genetic factors while environmental factors contribute to a certain extent. Brain iron levels in the basal ganglia and cortex are controlled by distinct sets of genes.


Assuntos
Gânglios da Base , Ferro , Idoso , Encéfalo , Córtex Cerebral/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade
7.
Magn Reson Med ; 88(2): 962-972, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35435267

RESUMO

PURPOSE: Susceptibility maps are usually derived from local magnetic field estimations by minimizing a functional composed of a data consistency term and a regularization term. The data-consistency term measures the difference between the desired solution and the measured data using typically the L2-norm. It has been proposed to replace this L2-norm with the L1-norm, due to its robustness to outliers and reduction of streaking artifacts arising from highly noisy or strongly perturbed regions. However, in regions with high SNR, the L1-norm yields a suboptimal denoising performance. In this work, we present a hybrid data fidelity approach that uses the L1-norm and subsequently the L2-norm to exploit the strengths of both norms. METHODS: We developed a hybrid data fidelity term approach for QSM (HD-QSM) based on linear susceptibility inversion methods, with total variation regularization. Each functional is solved with ADMM. The HD-QSM approach is a two-stage method that first finds a fast solution of the L1-norm functional and then uses this solution to initialize the L2-norm functional. In both norms we included spatially variable weights that improve the quality of the reconstructions. RESULTS: The HD-QSM approach produced good quantitative reconstructions in terms of structural definition, noise reduction, and avoiding streaking artifacts comparable with nonlinear methods, but with higher computational efficiency. Reconstructions performed with this method achieved first place at the lowest RMS error category in stage 1 of the 2019 QSM Reconstruction Challenge. CONCLUSIONS: The proposed method allows robust and accurate QSM reconstructions, obtaining superior performance to state-of-the-art methods.


Assuntos
Mapeamento Encefálico , Processamento de Imagem Assistida por Computador , Algoritmos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos
8.
Magn Reson Med ; 87(1): 457-473, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34350634

RESUMO

PURPOSE: The presence of dipole-inconsistent data due to substantial noise or artifacts causes streaking artifacts in quantitative susceptibility mapping (QSM) reconstructions. Often used Bayesian approaches rely on regularizers, which in turn yield reduced sharpness. To overcome this problem, we present a novel L1-norm data fidelity approach that is robust with respect to outliers, and therefore prevents streaking artifacts. METHODS: QSM functionals are solved with linear and nonlinear L1-norm data fidelity terms using functional augmentation, and are compared with equivalent L2-norm methods. Algorithms were tested on synthetic data, with phase inconsistencies added to mimic lesions, QSM Challenge 2.0 data, and in vivo brain images with hemorrhages. RESULTS: The nonlinear L1-norm-based approach achieved the best overall error metric scores and better streaking artifact suppression. Notably, L1-norm methods could reconstruct QSM images without using a brain mask, with similar regularization weights for different data fidelity weighting or masking setups. CONCLUSION: The proposed L1-approach provides a robust method to prevent streaking artifacts generated by dipole-inconsistent data, renders brain mask calculation unessential, and opens novel challenging clinical applications such asassessing brain hemorrhages and cortical layers.


Assuntos
Artefatos , Mapeamento Encefálico , Algoritmos , Teorema de Bayes , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética
9.
Magn Reson Med ; 86(3): 1241-1255, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33783037

RESUMO

PURPOSE: The aim of the second quantitative susceptibility mapping (QSM) reconstruction challenge (Oct 2019, Seoul, Korea) was to test the accuracy of QSM dipole inversion algorithms in simulated brain data. METHODS: A two-stage design was chosen for this challenge. The participants were provided with datasets of multi-echo gradient echo images synthesized from two realistic in silico head phantoms using an MR simulator. At the first stage, participants optimized QSM reconstructions without ground truth data available to mimic the clinical setting. At the second stage, ground truth data were provided for parameter optimization. Submissions were evaluated using eight numerical metrics and visual ratings. RESULTS: A total of 98 reconstructions were submitted for stage 1 and 47 submissions for stage 2. Iterative methods had the best quantitative metric scores, followed by deep learning and direct inversion methods. Priors derived from magnitude data improved the metric scores. Algorithms based on iterative approaches and total variation (and its derivatives) produced the best overall results. The reported results and analysis pipelines have been made public to allow researchers to compare new methods to the current state of the art. CONCLUSION: The synthetic data provide a consistent framework to test the accuracy and robustness of QSM algorithms in the presence of noise, calcifications and minor voxel dephasing effects. Total Variation-based algorithms produced the best results among all metrics. Future QSM challenges should assess whether this good performance with synthetic datasets translates to more realistic scenarios, where background fields and dipole-incompatible phase contributions are included.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Algoritmos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico
10.
Magn Reson Med ; 86(1): 526-542, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33638241

RESUMO

PURPOSE: To create a realistic in silico head phantom for the second QSM reconstruction challenge and for future evaluations of processing algorithms for QSM. METHODS: We created a digital whole-head tissue property phantom by segmenting and postprocessing high-resolution (0.64 mm isotropic), multiparametric MRI data acquired at 7 T from a healthy volunteer. We simulated the steady-state magnetization at 7 T using a Bloch simulator and mimicked a Cartesian sampling scheme through Fourier-based processing. Computer code for generating the phantom and performing the MR simulation was designed to facilitate flexible modifications of the phantom in the future, such as the inclusion of pathologies as well as the simulation of a wide range of acquisition protocols. Specifically, the following parameters and effects were implemented: TR and TE, voxel size, background fields, and RF phase biases. Diffusion-weighted imaging phantom data are provided, allowing future investigations of tissue-microstructure effects in phase and QSM algorithms. RESULTS: The brain part of the phantom featured realistic morphology with spatial variations in relaxation and susceptibility values similar to the in vivo setting. We demonstrated some of the phantom's properties, including the possibility of generating phase data with nonlinear evolution over TE due to partial-volume effects or complex distributions of frequency shifts within the voxel. CONCLUSION: The presented phantom and computer programs are publicly available and may serve as a ground truth in future assessments of the faithfulness of quantitative susceptibility reconstruction algorithms.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Algoritmos , Encéfalo/diagnóstico por imagem , Simulação por Computador , Cabeça/diagnóstico por imagem , Humanos , Imagens de Fantasmas
11.
Magn Reson Med ; 85(2): 818-830, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32909334

RESUMO

PURPOSE: To reduce the misbalance between compensation gradients and macroscopic field gradients, we introduce an adaptive slice-specific z-shimming approach for 2D spoiled multi-echo gradient-echoe sequences in combination with modeling of the signal decay. METHODS: Macroscopic field gradients were estimated for each slice from a fast prescan (15 seconds) and then used to calculate slice-specific compensation moments along the echo train. The coverage of the compensated field gradients was increased by applying three positive and three negative moments. With a forward model, which considered the effect of the slice profile, the z-shim moment, and the field gradient, R2∗ maps were estimated. The method was evaluated in phantom and in vivo measurements at 3 T and compared with a spoiled multi-echo gradient-echo and a global z-shimming approach without slice-specific compensation. RESULTS: The proposed method yielded higher SNR in R2∗ maps due to a broader range of compensated macroscopic field gradients compared with global z-shimming. In global white matter, the mean interquartile range, proxy for SNR, could be decreased to 3.06 s-1 with the proposed approach, compared with 3.37 s-1 for global z-shimming and 3.52 s-1 for uncompensated multi-echo gradient-echo. CONCLUSION: Adaptive slice-specific compensation gradients between echoes substantially improved the SNR of R2∗ maps, and the signal could also be rephased in anatomical areas, where it has already been completely dephased.


Assuntos
Imagem Ecoplanar , Substância Branca , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Imagens de Fantasmas
12.
Radiology ; 296(3): 619-626, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32602825

RESUMO

Background Deep gray matter structures in patients with Alzheimer disease (AD) contain higher brain iron concentrations. However, few studies have included neocortical areas, which are challenging to assess with MRI. Purpose To investigate baseline and change in brain iron levels using MRI at 3 T with R2* relaxation rate mapping in individuals with AD compared with healthy control (HC) participants. Materials and Methods In this prospective study, participants with AD recruited between 2010 and 2016 and age-matched HC participants selected from 2010 to 2014 were evaluated. Of 100 participants with AD, 56 underwent subsequent neuropsychological testing and brain MRI at a mean follow-up of 17 months. All participants underwent 3-T MRI, including R2* mapping corrected for macroscopic B0 field inhomogeneities. Anatomic structures were segmented, and median R2* values were calculated in the neocortex and cortical lobes, basal ganglia (BG), hippocampi, and thalami. Multivariable linear regression analysis was applied to study the difference in R2* levels between groups and the association between longitudinal changes in R2* values and cognition in the AD group. Results A total of 100 participants with AD (mean age, 73 years ± 9 [standard deviation]; 58 women) and 100 age-matched HC participants (mean age, 73 years ± 9; 60 women) were evaluated. Median R2* levels were higher in the AD group than in the HC group in the BG (HC, 29.0 sec-1; AD, 30.2 sec-1; P = .01) and total neocortex (HC, 17.0 sec-1; AD, 17.4 sec-1; P < .001) and regionally in the occipital (HC, 19.6 sec-1; AD, 20.2 sec-1; P = .007) and temporal (HC, 16.4 sec-1; AD, 18.1 sec-1; P < .001) lobes. R2* values in the temporal lobe were associated with longitudinal changes in Consortium to Establish a Registry for Alzheimer's Disease total score (ß = -3.23 score/sec-1, P = .003) in participants with AD independent of longitudinal changes in brain volume. Conclusion Iron concentration in the deep gray matter and neocortical regions was higher in patients with Alzheimer disease than in healthy control participants. Change in iron levels over time in the temporal lobe was associated with cognitive decline in individuals with Alzheimer disease. © RSNA, 2020 Online supplemental material is available for this article.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Química Encefálica/fisiologia , Encéfalo/diagnóstico por imagem , Ferro/análise , Imageamento por Ressonância Magnética/métodos , Idoso , Idoso de 80 Anos ou mais , Humanos , Pessoa de Meia-Idade , Estudos Prospectivos
13.
Magn Reson Med ; 84(3): 1624-1637, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32086836

RESUMO

PURPOSE: The 4th International Workshop on MRI Phase Contrast and QSM (2016, Graz, Austria) hosted the first QSM Challenge. A single-orientation gradient recalled echo acquisition was provided, along with COSMOS and the χ33 STI component as ground truths. The submitted solutions differed more than expected depending on the error metric used for optimization and were generally over-regularized. This raised (unanswered) questions about the ground truths and the metrics utilized. METHODS: We investigated the influence of background field remnants by applying additional filters. We also estimated the anisotropic contributions from the STI tensor to the apparent susceptibility to amend the χ33 ground truth and to investigate the impact on the reconstructions. Lastly, we used forward simulations from the COSMOS reconstruction to investigate the impact noise had on the metric scores. RESULTS: Reconstructions compared against the amended STI ground truth returned lower errors. We show that the background field remnants had a minor impact in the errors. In the absence of inconsistencies, all metrics converged to the same regularization weights, whereas structural similarity index metric was more insensitive to such inconsistencies. CONCLUSION: There was a mismatch between the provided data and the ground truths due to the presence of unaccounted anisotropic susceptibility contributions and noise. Given the lack of reliable ground truths when using in vivo acquisitions, simulations are suggested for future QSM Challenges.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Encéfalo , Imageamento por Ressonância Magnética , Reprodutibilidade dos Testes
14.
Magn Reson Med ; 84(2): 620-633, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31868260

RESUMO

PURPOSE: To model and correct the dephasing effects in the gradient-echo signal for arbitrary RF excitation pulses with large flip angles in the presence of macroscopic field variations. METHODS: The dephasing of the spoiled 2D gradient-echo signal was modeled using a numerical solution of the Bloch equations to calculate the magnitude and phase of the transverse magnetization across the slice profile. Additionally, regional variations of the transmit RF field and slice profile scaling due to macroscopic field gradients were included. Simulations, phantom, and in vivo measurements at 3 T were conducted for R2∗ and myelin water fraction (MWF) mapping. RESULTS: The influence of macroscopic field gradients on R2∗ and myelin water fraction estimation can be substantially reduced by applying the proposed model. Moreover, it was shown that the dephasing over time for flip angles of 60° or greater also depends on the polarity of the slice-selection gradient because of phase variation along the slice profile. CONCLUSION: Substantial improvements in R2∗ accuracy and myelin water fraction mapping coverage can be achieved using the proposed model if higher flip angles are required. In this context, we demonstrated that the phase along the slice profile and the polarity of the slice-selection gradient are essential for proper modeling of the gradient-echo signal in the presence of macroscopic field variations.


Assuntos
Algoritmos , Imageamento por Ressonância Magnética , Bainha de Mielina , Imagens de Fantasmas
15.
Neuroimage ; 195: 373-383, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-30935908

RESUMO

Quantitative susceptibility mapping (QSM) is based on magnetic resonance imaging (MRI) phase measurements and has gained broad interest because it yields relevant information on biological tissue properties, predominantly myelin, iron and calcium in vivo. Thereby, QSM can also reveal pathological changes of these key components in widespread diseases such as Parkinson's disease, Multiple Sclerosis, or hepatic iron overload. While the ill-posed field-to-source-inversion problem underlying QSM is conventionally assessed by the means of regularization techniques, we trained a fully convolutional deep neural network - DeepQSM - to directly invert the magnetic dipole kernel convolution. DeepQSM learned the physical forward problem using purely synthetic data and is capable of solving the ill-posed field-to-source inversion on in vivo MRI phase data. The magnetic susceptibility maps reconstructed by DeepQSM enable identification of deep brain substructures and provide information on their respective magnetic tissue properties. In summary, DeepQSM can invert the magnetic dipole kernel convolution and delivers robust solutions to this ill-posed problem.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Aprendizado Profundo , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Adulto , Algoritmos , Feminino , Humanos , Masculino , Adulto Jovem
16.
Z Med Phys ; 29(2): 139-149, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30773331

RESUMO

Quantitative susceptibility mapping (QSM) reveals pathological changes in widespread diseases such as Parkinson's disease, Multiple Sclerosis, or hepatic iron overload. QSM requires multiple processing steps after the acquisition of magnetic resonance imaging (MRI) phase measurements such as unwrapping, background field removal and the solution of an ill-posed field-to-source-inversion. Current techniques utilize iterative optimization procedures to solve the inversion and background field correction, which are computationally expensive and lead to suboptimal or over-regularized solutions requiring a careful choice of parameters that make a clinical application of QSM challenging. We have previously demonstrated that a deep convolutional neural network can invert the magnetic dipole kernel with a very efficient feed forward multiplication not requiring iterative optimization or the choice of regularization parameters. In this work, we extended this approach to remove background fields in QSM. The prototype method, called SHARQnet, was trained on simulated background fields and tested on 3T and 7T brain datasets. We show that SHARQnet outperforms current background field removal procedures and generalizes to a wide range of input data without requiring any parameter adjustments. In summary, we demonstrate that the solution of ill-posed problems in QSM can be achieved by learning the underlying physics causing the artifacts and removing them in an efficient and reliable manner and thereby will help to bring QSM towards clinical applications.


Assuntos
Artefatos , Aprendizado Profundo , Processamento de Imagem Assistida por Computador/métodos , Encéfalo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética
17.
J Alzheimers Dis ; 68(2): 789-796, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30775995

RESUMO

BACKGROUND/OBJECTIVE: Higher white matter hyperintensity (WMH) load has been reported in Alzheimer's disease (AD) patients in different brain regions when compared to controls. We aimed to assess possible differences of WMH spatial distribution between AD patients and age-matched controls by means of lesion probability maps. METHODS: The present study included MRI scans of 130 probable AD patients with a mean age of 73.4±8.2 years from the Prospective Dementia Registry Austria Study and 130 age-matched healthy controls (HC) from the Austrian Stroke Prevention Family Study. Risk factors such as hypertension, diabetes mellitus, hypercholesterolemia, coronary artery disease, and smoking were assessed. Manually segmented FLAIR WMH masks were non-linearly registered to a template and voxel-based probability mapping was performed. RESULTS: There were no significant between-group differences in cardiovascular risk factors and WMH volume. AD patients showed a significantly higher likelihood of having WMH in a bilateral periventricular distribution than controls before and after correcting for age, sex, cardiovascular risk factors, and ventricular volume (p≤0.05; threshold-free cluster enhancement corrected). There was no significant association between the periventricular WMH volume and cognitive decline of AD patients. CONCLUSION: In AD, WMH were preferentially found in a periventricular location but the volume of lesions was unrelated to cognitive decline in our study irrespective of lesion location.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/epidemiologia , Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/psicologia , Áustria/epidemiologia , Estudos de Coortes , Feminino , Seguimentos , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Sistema de Registros
18.
Mov Disord ; 34(1): 129-132, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30536988

RESUMO

OBJECTIVE: We investigated R2* relaxation rates as a marker of iron content in the substantia nigra in patients with common tremor disorders and explored their diagnostic properties. METHODS: Mean nigral R2* rates were measured in 40 patients with tremor-dominant Parkinson's disease (PD), 15 with tremor in dystonia, 25 with essential tremor, and 25 healthy controls. RESULTS: Tremor-dominant PD patients had significantly higher nigral R2* values (34.1 ± 5.7) than those with tremor in dystonia (30.0 ± 3.9), essential tremor (30.6 ± 4.8), and controls (30.0 ± 2.8). An R2* threshold of 31.15 separated tremor-dominant PD from controls with a sensitivity and specificity of 67.5% and 72%. The sensitivity and specificity for discrimination between PD and non-PD tremor patients was 67.5% and 60%. CONCLUSION: Iron content in the substantia nigra is significantly higher in tremor-dominant PD than in tremor in dystonia, essential tremor, and controls. Because of the considerable overlap, nigral R2* cannot be suggested as a useful diagnostic tool. © 2018 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Ferro/metabolismo , Substância Negra/metabolismo , Tremor/metabolismo , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/análise , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/diagnóstico , Doença de Parkinson/metabolismo , Substância Negra/fisiopatologia , Tremor/fisiopatologia
19.
Magn Reson Med ; 81(2): 1399-1411, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30265767

RESUMO

PURPOSE: Background-field removal is a crucial preprocessing step for quantitative susceptibility mapping (QSM). Remnants from this step often contaminate the estimated local field, which in turn leads to erroneous tissue-susceptibility reconstructions. The present work aimed to mitigate this undesirable behavior with the development of a new approach that simultaneously decouples background contributions and local susceptibility sources on QSM inversion. METHODS: Input phase data for QSM can be seen as a composite scalar field of local effects and residual background components. We developed a new weak-harmonic regularizer to constrain the latter and to separate the 2 components. The resulting optimization problem was solved with the alternating directions of multipliers method framework to achieve fast convergence. In addition, for convenience, a new alternating directions of multipliers method-based preconditioned nonlinear projection onto dipole fields solver was developed to enable initializations with wrapped-phase distributions. Weak-harmonic QSM, with and without nonlinear projection onto dipole fields preconditioning, was compared with the original (alternating directions of multipliers method-based) total variation QSM algorithm in phantom and in vivo experiments. RESULTS: Weak-harmonic QSM returned improved reconstructions regardless of the method used for background-field removal, although the proposed nonlinear projection onto dipole fields method often obtained better results. Streaking and shadowing artifacts were substantially suppressed, and residual background components were effectively removed. CONCLUSION: Weak-harmonic QSM with field preconditioning is a robust dipole inversion technique and has the potential to be extended as a single-step formulation for initialization with uncombined multi-echo data.


Assuntos
Encéfalo/diagnóstico por imagem , Aumento da Imagem/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Algoritmos , Artefatos , Mapeamento Encefálico , Simulação por Computador , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Reprodutibilidade dos Testes , Razão Sinal-Ruído
20.
Mult Scler ; 25(1): 48-54, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29027843

RESUMO

BACKGROUND: Vascular risk factors (VRF) in multiple sclerosis (MS) patients have been associated with lower brain volumes. It is currently unknown if this association already exists in early MS and how it develops over time. METHODS: We identified 82 patients with clinically isolated syndrome (CIS) ( n = 61) or with early relapsing-remitting MS ( n = 21) and assessed their VRF including arterial hypertension, hyperlipidaemia, diabetes mellitus and smoking. We analysed T2-lesion load, normalized brain volume (NBV), cortical grey (cGMV) and white matter volumes (WMV), thalamic and basal ganglia volumes at baseline and follow-up magnetic resonance imaging (MRI) and assessed the percentage of brain volume change (PBVC) using SIENA. RESULTS: Patient mean age was 32.4 (±8.7) years and 54 (65%) were women. Median follow-up period was 42 (29-54) months. In total, 26 patients (31.7%) had one or more VRF (VRF+). At baseline, VRF+ patients had a lower NBV (1530.9 cm3 vs 1591.2 cm3, p = 0.001), a lower cGMV (628.5 cm3 vs 668.6 cm3, p = 0.002) and WMV (752.2 cm3 vs 783.9 cm3, p = 0.009) than VRF-negative patients. Similar results were obtained at follow-up. PBVC was comparable between patients with and without VRF. CONCLUSION: VRF are associated with lower brain volume already in early MS but do not lead to increased brain volume loss during 3.5 years of follow-up.


Assuntos
Encéfalo/patologia , Doenças Desmielinizantes/patologia , Diabetes Mellitus , Hiperlipidemias , Hipertensão , Fumar , Adulto , Encéfalo/diagnóstico por imagem , Comorbidade , Doenças Desmielinizantes/diagnóstico por imagem , Doenças Desmielinizantes/epidemiologia , Diabetes Mellitus/epidemiologia , Feminino , Seguimentos , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Humanos , Hiperlipidemias/epidemiologia , Hipertensão/epidemiologia , Imageamento por Ressonância Magnética , Masculino , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/epidemiologia , Esclerose Múltipla Recidivante-Remitente/patologia , Fatores de Risco , Fumar/epidemiologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...